Traversing Highly-varied Terrain: Enhanced Contacts for Human-scale Robot Locomotion

Traversing complicated environment

 Rescue, exploration, construction and other activities in the field

http://www.deccanchronicle.com/150101/technology-science-andtrends/article/nasa-designs-ape-robot-robosimian-disaster-relief

SpinyHand

Conclusion

Introduction

SupraPed

SpinyPalm

http://www.dailymail.co.uk/sciencetech/article-3222992/Nasareveals-bizarre-hedgehog-robot-roll-fall-alien-planets.html

Rocky terrains

https://www.pinterest.com/pin/495114552764154649/

http://www.summitpost.org/start-of-rocky-terrain/781777

https://www.reddit.com/r/SketchDaily/comments/2icdmr/ october_5th_rocky_terrain/

Attempts on rough terrain locomotion

Introduction

SupraPed

SpinyPalm

SpinyHand

Tradeoff on robot scales

Small

SpinyPalm

SpinyHand

Limited robot-accessible terrain types

Still much narrower than human

Adapted from Duke-Stanford-UCSB NSF Proposal

ction SupraPed

SpinyPalm

SpinyHand

Limiting factor: contact

 Locomotion: transform the robot posture through a sequence of contacts that guarantee static and dynamic stability.

https://www.youtube.com/watch?v=WYKgHa8hH1k

https://www.inverse.com/article/24487-atlas-partial-foothold-algorithm

http://www.switchbacktravel.com/best-trail-running-shoes

How do humans improve contacts?

Hiking pole

http://www.trailspace.com/articles/trekking-poles-fit-maintain.html

Introduction

Surface Grasping

http://avantgardica.blogspot.com/2014/02/winter-vacation-climbing-in-getu.html

Contributions

- SupraPed: point contact
 - Design solutions of the smart staff
 - Sensing methods for terrain information -
- SpinyPalm: contact patch
 - New spine design for higher adhesion density
 - Spine contact model
 - Scaled-up contact patch (palm)
- SpinyHand: hierarchical contact patches
 - Hand design -
 - Grasp model with spine contact (non-convex)
 - SimGrasp: a convenient hand/grasping simulator

SpinyPalm SpinyHand

SupraPed: Extend the reach of a point contact

Design requirements (smart staff)

- Lightweight ٠
- Controllable length •
- Terrain sensing •

Introduction

SupraPed SpinyPalm

SpinyHand

Smart staff design

- 3 segments •
- Single actuator ٠ with tendon
- Spring design •
- SMA active brake •

Smart staff design

- 3 segments ٠
- Single actuator with tendon
- Spring design
- Active brake •

- Range of length: 0.4 ~ 1.0m
- Weight: 350 g
- Interchangeable end-effector

Extending to grasp

Changing the tool tip

SpinyPalm **SpinyHand**

Sensor design

- Ground reaction force
 - 500N axial and 50N lateral
- Robust, compact, and low inertia

SupraPed

Introduction

SpinyPalm

5-DOF Force and Torque Sensor (Patent Pending)

Terrain sensing methods

- 1) Surface normal 2) Coefficient of friction
- Vision
 - Complexity
 - Occlusion
- Contact position based
 - Poor accuracy
 - Non-flexible
- Contact force based
 - Low control effort
 - Short tip travel (few mm)
 - Fast (few seconds)

Terrain sensing procedures

Active sensing primitive

Terrain sensing verification

- Probing manually
- KUKA arm

SpinyPalm SpinyHand

Results

Introduction

2 deg average error (both experiments) ٠

SupraPed contact limitation

Improve the contact

Admissible force volume •

Introduction

SupraPed

Improve the contact

Miniatured anchored contact array

SupraPed SpinyPalm SpinyHand

SpinyPalm: Enhance the admissible force volume of a contact patch

Miniatured spike array

- Shear spring: load sharing
- Normal spring: conforming ٠

Manipulation Laboratory

Compliantly-support micro-spines

Micro-spine

Dai and Gorb, JEB2002

Introduction

SupraPed SpinyPalm

SpinyHand

Prior work (micro-spine)

SpinyBotll S. Kim 2005

SpinyHand

0.4kg

SpinyPalm

Introduction

SupraPed

CLIBO A. Sintov 2011

2kg

Prior work (micro-spine)

Our goal: human-scale application

>10X

SpinyHand

JPL LEMUR 8kg

SpinyPalm

SupraPed

Introduction

JPL RoboSimian 100kg

Further scaling up

Need to improve the adhesion density!

Introduction

http://northdesignlabs.com/cockroach-mimetic-climbing-paddles/

Spine design with smaller footprint?

Number of immediately engaged spines is proportional ٠ to spine density

Conclusion

20-40 % immediately engaged surface

SpinyPalm

SpinyHand

Introduction

SupraPed

31

New spine design: linearly constrained

- Longer normal travel: conformability
- Low shear contact compliance

How to optimize the spine design?

How well the adhesion scale up with spine density?

What is the admissible force volume?

Linearly-constrained spine array

How to optimize the spine design?

How well the adhesion scale up with spine density?

What is the admissible force volume?

• Spine diameter d_s

maximum bending stress region

 d_s
d_s α er

 β Inclination angle ٠

 d_s

 α

• Inclination angle $\beta = 15 \deg$

How to optimize the spine design?

How well the adhesion scale up with spine density?

What is the admissible force volume?

1D single spine empirical model

- Slip failure: fixed probability
- Asperity failure: truncate Gaussian
- Spine failure: Gaussian

1D spine array probability model

- Backlash
 - 0.1 ~ 1 mm
 - Uniform distribution
- Engaged spine bending
 - 17.5 N/mm

Introduction

1D spine array probability model

- Backlash
 - 0.1 ~ 1 mm
 - Uniform distribution
- Engaged spine bending
 - 17.5 N/mm

1D spine array probability model

- Backlash
 - 0.1 ~ 1 mm
 - Uniform distribution
- Engaged spine bending
 - 17.5 N/mm

$$E[F] = \sum_{i=1}^{n} \iiint F_{i} f_{\Phi_{Mi}} f_{Si} f_{M_{i}} dM_{i} dS_{i} d\Phi_{Mi}$$

Spine Force
Mean spine array adhesioFailure Type

- Backlash

- Non close-form solution
- Monte Carlo

Experimental verification

 Loading test with different spine density (fixed contact area)

Results: density scalability

- Highly stochastic
- Backlash causes scaling plateau

Larger Backlash

Adhesion density scalability

- Implementation
 - 60 spines
 - 18 x 18 mm area
- Performance
 - **42 67** N

Introduction

- 3 - 4 x adhesion

SupraPed

SpinyPalm

SpinyHand

Conclusion

Spine Tile

How to optimize the spine design?

How well the adhesion scale up with spine density?

What is the admissible force volume?

Introduction

SpinyHand

3D spine array model

- 1D adhesion model
- Probability
- Single spine empirical —^{Model}→ spine array prediction
- Not feasible for 2 & 3D

3D spine array model

• 2D adhesion model $F(\phi)$

Introduction

- Equivalent asperity slope -> failure force

3D spine array model

- 3D adhesion model $F(\phi, \theta)$
 - Smaller equivalent inclination angle $\beta'(\theta) = \arcsin(\sin\beta\cos\theta)$
 - Shaft contact -> weaker asperity

Introduction SupraPed SpinyPalm SpinyHand

Conclusion

Spine model verification

Non-convex boat shape •

Biomimetics & Dexterous

Manipulation Laboratory

Opposed spine contact patch

Introduction

SupraPed with enhanced contact

Scaling up spine contact patch

Scaling up spine contact patch: SpinyPalm

- Giant spine tile
 - Scaling up plateau due to backlash
 - Limited by local poor contact

Scaling up spine contact patch: SpinyPalm

• Pulley system: 1) load sharing; 2) free travel; 3) outliner

Introduction

Scaling up spine contact patch: SpinyPalm

• Pulley system: 1) load sharing; 2) free travel

Introduction

SupraPed

SpinyPalm

Spine contact patch load sharing

- Better load sharing
 - Allow better contact patch to take more load
- Spine tile contact stiffness
 - Reflects the contact quality

Spine contact patch load sharing model

- Friction prevents identical load sharing
- Contact stiffness distributes more load on better tile
- Moderate friction improves palm performance

Equivalent palm system for experiments

Improve SpinyPalm with friction

- Overall adhesion is improved by 20~60 %
- Bearing support pulley is replaced with fixed rod
 - Less complexity
 - Higher spine tile density

SpinyPalm test with robot (5kg in shear)

SupraPed

SpinyPalm

SpinyHand

SpinyPalm test with human (55kg in shear)

Introduction

SupraPed

SpinyPalm test on different surfaces

SpinyPalm

SpinyHand

Introduction

SupraPed

Surface types are:

- 1) paving stone;
- 2) natural rock;
- 3) coarse stucco;
- 4) sand stone;
- 5) pebble wall;
- 6) fine stucco;
- 7) bark texture wood;
- 8) fine concrete;
- 9) coarse concrete.

SpinyPalm limitation

Poor performance on large surface variation

SpinyHand: Hierarchical Contact Patches

Rock Climbing

• Surface grasping

Rock climbing griping technique

Pinch

SpinyPalm

SupraPed

Introduction

Crimp

Sloper

SpinyHand design

SpinyHand grasping types

Pinch

SpinyPalm

SpinyHand

Conclusion

SupraPed

Introduction

Crimp

Sloper

SpinyHand implementation

- (Motor + double support pulley) x 4
- (Motor + worm drive) x 2

SupraPed SpinyPalm

SpinyHand

SpinyHand implementation

- 4-layer PCB
 - Motor drivers
 - Signal conditioning
- Sensors
 - Tendon position sensor x 4
 - Rotary finger position / moment x 4

How to apply grasping force?

https://lockerdome.com/stackmedia/6881873678971668

How to apply grasping force?

Finger design: prismatic phalanx

Shear contact force

SupraPed

Introduction

Strong phalanx spring: travel after contact is formed

Finger design: prismatic phalanx

Finger design: fingernail

- 600N force on fingernail
- Motion sequence:

SupraPed

Introduction

 fingernail -> hard stop -> the rest of finger joints

Grasp performance

3D force -> 6D force and torque (wrench space) •

Manipulation Laboratory

Grasp modeling challenge

- Optimization problem given contact constraints
 - Convex admissible volume (Coulomb friction cone)
- Non-convex spine contact

https://sourceforge.net/p/simox/wiki/GraspStudio/

Grasp model with non-convex adhesion

- Hierarchical convex decomposition
- Branch-and-bound (BnB) with heuristic
- Mixed-integer linear programming (MILP)
- Performance (2 x 3-phalanx finger)
 - 5~10 x efficiency
 - Equilibrium test: avg. 185 ms
 - Wrench limit: avg. 12 s

Stability test under different configuration

SpinyHand grasp model: contact forces

• Finger states: 1) joint angles; 2) contact positions

SpinyHand grasp model: contact forces

- Closed form ٠ solution
- Inverting square ٠ matrix A
- Modifying b to • consider frictions

$$A \boldsymbol{f}_c = \boldsymbol{b}$$

where

$$A = \begin{bmatrix} J^T \\ P_x \end{bmatrix} \quad and \quad \mathbf{b} = \begin{bmatrix} K_r \mathbf{q} + \mathbf{p}_r - f_t \mathbf{r} \\ K_p \mathbf{d} + \mathbf{p}_p - \mathbf{f}_p(\mathbf{c}, f_t) \end{bmatrix}$$

SpinyHand grasp model: wrench space

- Fixed-wrist failure
 - Finger tendon force control
 - Polyhedral spanned by n finger wrench vectors
- Floating-wrist failure
 - Wrist F/T control

Introduction

- Fixed finger tendon
- Loading at the wrist

SpinyHand grasp model: wrench space

- Inefficiency: gradient descent search
- Instability (sensitive to step size): ill-conditioned A

Sweep over every unit wrench vector (3D/6D sphere)		
Sweep along	g a unit wrench vector until	spine failure
Wrench	Gradient descent search	Contact Forces

SpinyHand grasp model: wrench space

- 1) Finger wrench spaces (points cloud x n)
- 2) Finger position search space (6n) -> wrist position search space (6), search for valid sets
- 3) Compute grasp wrench space point cloud based on valid sets4) Find the boundary

2-3 orders improvement: 12s / wrench limit (4200s / wrench space) -> 6s / wrench space

Experimental validation: setup

- Adjustable spring for finger tendon actuation
- Contact force sensing: capacitive tactile sensor
- External loading force (sync)

Introduction

SupraPed SpinyPalm

SpinyHand

Conclusion

Experiment results: loading process

- Similar trend
- Non-linearity

Experiment results: wrench space

- Mountain shape symmetric about Fz
- avg. 12% error (2 surfaces & 2 grasping forces)

Model discussion

- Key design parameters: joint pulley radius
- Design guidelines
- Dual pulley chain
 - Pulleys with different radii
 - Select with motor direction

Simulation platform

- SimGrasp
 - <u>https://bitbucket.org/shiquan/</u> <u>sim-grasp/overview</u>
 - Built upon dynamic engine Klamp't
 - Grasp simulator for generic hand design (in batch)

Manipulation Laboratory

SimGrasp for SpinyHand

Introduction

n SupraPed

ed SpinyPalm

SpinyHand

Conclusion

Biomimetics & Dexterous Manipulation Laboratory

SimGrasp for SpinyHand

Introduction

SupraPed

SpinyPalm SpinyHand

nd Conclusion

Rock climbing analysis

RoboSimian: 108kg •

[Shear(N) Moment(Nm) Normal(N)]

Future work

- Test SpinyHand in the field!
- Compliant-base spine tile • and spine retraction
- Grasping strategy •
- SpinyHand II

Contributions

- SupraPed: point contact
 - Design solutions of the smart staff
 - Sensing methods for terrain information
- SpinyPalm: contact patch
 - New spine design for higher adhesion density
 - Spine contact model

SupraPed

Introduction

- Scaled-up contact patch (70 kg)
- SpinyHand: hierarchical contact patches
 - Hand design (108kg Robosimian)

SpinyPalm

- Grasp model with spine contact (non-convex)
- SimGrasp: a convenient hand/grasping simulator

SpinyHand

Conclusion

Biomimetics & Dexterous

Manipulation Laboratory

