Principles for climbing with dry adhesion

1. Hierarchical compliance

2. Directional adhesives

3. Distributed force control

3/24/13

Directional gecko adhesion

Gecko Force-Space Results

Autumn et al. JEB 2006

loaded *against* stalk angle: **Coulomb friction**

Load, then pull off at various angles, and measure force

adhesion ~ tangential stress

Directional adhesion: loading cycle determines adhesion

normal and shear stress trajectory versus limit curve

microscope video, side view with trajectory shown

Directional adhesion: loading cycle determines adhesion

normal and shear stress trajectory versus limit curve

microscope video, side view with trajectory shown

Stickybot foot adhesion limit surface

D. Santos, et al.Gecko-Inspired Climbing Behaviors on Vertical and Overhanging Surfaces, IEEE ICRA 2008. 3/24/13

Adhesion limit surface implications

Force Control

optimal strategy for inverted surface

Johnson-Kendall-Roberts

Frictional Adhesion

Generalization: Formulate as linear programming problem to control foot orientation & internal forces for arbitrary loading conditions [Santos, JAST09].

3/24/13

Force Control: vertical surfaces consequences of adhesion model

metics

Control foot orientation + internal forces

3/24/13

Directional adhesion facilitates control of forces for smooth, efficient locomotion

Directional vs. non-directional

One front leg cycled with three feet attached (tripedal crawl). 3 successive steps shown

Dynamic Directional Adhesion

- Directional behavior similar to gecko and larger Stickybot stalks
- Adhesion maintained, while sliding.
- Provides noncatastrophic failure mechanism.

Hypothesis: directional adhesion **→** gentle loading + lift-off **→** long life

Adhesive structure analysis for optimization of performance

- Behavior occurs at multiple scales
 - Suspension scale (mm)
 - Commercial software is viable
 - Preload path only
 - Terminal features scale (µm)
 - Custom FE code
 - Semi-analytic models

Machining Process Overview

Control blade trajectory to get desired shape and dense packing of features

E. Eason et al., "Micro-Wedge Machining for the Manufacture of Directional Dry Adhesives," ASME Journal of Micro and Nano-Manufacturing, 2013 (in press)

Angle control: micromachining process

Key Design Parameters

- φ: angle of fiber
- Θ : interior fiber angle
- h: fiber height
- s: fiber spacing
- E: material Young's Modulus

Machined vs lithographic microwedge performance

Test results with unfilled PDMS

Loading on the wall is different from benchtop tests; geometry affects limit surface

How to get nearly uniform loading over the entire toe, with tolerance to a range of loading angles?

Loading angles: alignment compensation

Scaling to larger areas and loads: tiled arrays

Approx. 80cm²

Scaling to larger areas and loads: results

Manufacturing Adhesives

Problem: wax mold is not durable No surface treatment: reuse 1-2 times Repel Silane treatment: reuse 5-8 times (Draper)

This is an **expensive** problem Replacing mold takes 4 hr (**\$300** at \$75/hr) We want to reuse molds >100 times Mold cost per use: 2.4 min (**\$3**)

Attempts at more durable molds

- Use harder material in micromachining Attempted by Stanford (Pb-Sn) and Draper Forces are too high: indenting tool deflects and dulls
- 2. Lost-wax casting to replicate mold in metal Concerns about surface finish & grain size
- 3. Nickel metallization on wax mold (Draper) Poor surface finish and fidelity so far
- Daughter molds made from adhesives
 Promising

Materials compatibility requirements

Daughter mold material ① Cures on PDMS **No bond** to PDMS No distortion during cure

Step 2 is problematic PDMS pattern gets torn leaving debris in mold Cannot be **removed Destroys** feature tips

Daughter Mold compatibility trials

Tested 7 epoxies, 3 urethanes, 2 mold releases

- Epoxies bonded strongly to pattern, causing **tearing**
- Mold releases caused loss of fidelity and missing features
- Best results with **urethanes** and **no mold release**.

	No mold		Ease Release
	release	Repel Silane	200
	full cure	full cure	full cure
EpoxAcast 690	high bond	bond	mild bond
	full cure	partial cure	partial cure
EpoxAcast 670 HT	high bond	no bond	no bond
	no cure	no cure	no cure
E-Z Lam 60	no bond	no bond	mild bond
	full cure	full cure	full cure
Devcon 2 Ton	mild bond	bond	no bond
	full cure	full cure	full cure
Z-Poxy 30	mild bond	mild bond	no bond
	full cure	full cure	full cure
Great Planes 45	high bond	bond	no bond
	full cure	full cure	full cure
MAS Slow/Low Visc	high bond	high bond	no bond
	full cure	full cure	full cure
Innothane IE-20AH	no bond	no bond	no bond
	full cure	full cure	partial cure
Innothane IE-70A	no bond	no bond	no bond
	full cure	full cure	full cure
Innothane IE-90A	no bond	no bond	no bond

Looking ahead

R2R Process: External Radiation Source

Inspired partly by new Zman spin-off: Gecko-Inspired ON-OFF Adhesives For Orbital Debris Mitigation

Task Objectives:

 Develop full capture head using current gecko adhesive and leveraging smallscale two pad gripper prototypes
 Mock up compliant robotic arm and integrate with capture head for floating object capture demonstration on RoboDome testbed

Infusion Path:

option A: Small Sat Demo (partner with Qinetiq and Aerospace Corp) option B: ISS experiment or inspection (partner with JSC)

Technical Approach / Expected Accomplishment: Develop Robotic Capture Head Mock up compliant robotic arm Demo floating object capture

Role	Team Members	Section
PI	Aaron Parness	347
Co-I	Mark Cutkosky	Stanford
Co-I	George Studor	JSC
Co-I	Victor White	389
Co-I	Carl Seubert	344

Critical Milestones	Date
Demo of capture head on stiff mount	Apr 2013
Completion of mock-up compliant arm	Jun 2013
Demo of floating object capture	Sep 2013

Primary Technical Hurdles:

- Scaling 2-pad prototypes to full capture head
 - Correctly sizing compliance in robotic arm
 - Integrating elements for demo

other groups' adhesives

http://robotics.eecs.berkeley.edu/~ronf/Gecko/gecko-biblio.html

- CMU (Sitti)
- UC Berkeley (Fearing)
- Max Planck Inst. (Arzt)
- UCSB (Turner)
- Case Western (Dai)
- Seoul (Suh)
- . . .

Most of these require more normal force to stick, but also provide more adhesion once attached. They are less optimized for climbing and very low energy attachment/ detachment. Still, they are quite interesting too!

Your group's task:

- Find a reasonable "usage case" assume technology will continue to improve, cost will come down.
- Find a User and think about what she or he needs
- Present your idea on Thursday (1-2 slides)

Acknowledgements

