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Abstract— Perching on a vertical surface carries the risk of
severe damage to the vehicle if the maneuver fails, especially if
failure goes undetected. We present a detection method using an
onboard 3-axis accelerometer to discriminate between perching
success and failure. An analytical model was developed to
calculate acceleration differences for success and failure and
set decision times. Two distinct decision times were shown to
be effective, corresponding to properly engaging the gripper
and overloading the gripper’s capabilities. According to a
machine learning feature selection algorithm, the maximum
Z axis acceleration of the quadrotor and the presence of
near-zero readings are the most relevant features within these
two time frames. Using these features, the detection algorithm
discriminated between success and failure with a 91% accuracy
at 40ms, and 94% at 80 ms. Real-time detection and failure
recovery experiments with a 20 g quadrotor verify the detection
method. An improved approach that combines various decision
times correctly identified success/failure for all 20 trials with
an average total falling distance of 0.8 m during recovery.
We discuss the feasibility of extending our method to other
quadrotor platforms.

I. INTRODUCTION

Endowing Micro Air Vehicles (MAVs) with the ability to
perch greatly extends mission life, enables close inspection
of surfaces, and allows them to wait out undesirable flying
conditions. Additionally, perching in a dynamic maneuver
provides robustness against wind disturbances. Recently var-
ious perching mechanisms have been developed for different
MAV platforms to adhere to smooth surfaces [1]-[4], rough
surfaces [5]-[7] and even tubes [8,9]. While indoor perching
with adhesives and velcro has been accomplished, the flight
controls of most dynamic maneuvers rely largely on Vicon
positioning systems [10,11]. Off-Vicon position control is
still not accurate enough for closed-loop perching applica-
tions [12].

If perching fails, the MAV must recognize it as soon as
possible; any time spent falling brings it closer to collision
with the ground. Furthermore, if an MAV is able to recover
from one or more failed trials, it might finally achieve
a perching success. Robust perching and recovery on flat
surfaces have been demonstrated with Vicon [7]. The falling
distances before failure recognition and full recovery in
this work are sizable, relying on registering the platform
dropping a set distance. A multi-accelerometer based, off-
Vicon sensing strategy has been developed to detect the
incipient tilt of an avian-foot-style perched quadrotor on
tubes and tree branches [13]. Such a method would not allow
detection of failure on a flat wall, since incipient tilt does not
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Fig. 1: Time sequence of a perching failure recovery. The
platform shown is the 20 gram Crazyflie quadrotor used in
real-time experiments.

necessarily indicate failure. Here we demonstrate recovery
from perching failure on flat surfaces utilizing only onboard
sensing with less detection time and falling distance than
previous work.

Accelerometer-based sensing and tactile sensing have been
widely used in robotic end-effectors to measure contact
forces and vibrations. For gripping applications, such sensing
methods can achieve quick detection before relative move-
ment can be measured [14,15]. For object characterization
applications accelerometers were explored to collect vibra-
tion data “blindly” [16]-[19]. More thorough reviews of such
sensing methods can be found in [20].

Thus, onboard accelerometers are a likely candidate for
fast detection of perching failures and perching surface char-
acterization. The approach does not rely on the measurement
of free-fall distance or prior knowledge of impact initial con-
ditions captured by vision systems, and takes advantage of
the fact that an onboard accelerometer is standard equipment
on most quadrotors.

This paper focuses on using an onboard 3-axis accelerom-
eter on a Crazyflie [21] quadrotor with a perching mech-
anism introduced in [1] to detect perching success/failure
quickly and accurately. For dynamic perching on surfaces, a
quadrotor usually has more control authority to perch on
inverted surfaces than vertical or nearly vertical surfaces,
which makes the latter case more challenging to recover
from failure. Hence, this paper focuses on the harder case.
To the best of the authors’ knowledge, this is the first work to
report sensing of and recovery from failed adhesive perching
using onboard sensing and simple machine learning. In
this paper, we first present a simplified model to describe



the perching post-impact behavior. Next, we use captured
accelerometer data from perching successes and failures to
train a Support Vector Machine (SVM) to select an optimal
set of features. Then, we implement and verify our perching
failure detection method with real-time flight tests. Finally,
we discuss extensions to other quadrotor platforms.

II. MODELING

The attachment mechanism consists of a pair of control-
lable adhesives for adhering to a smooth surface, a rebound
spring to absorb rebound kinetic energy, and several pieces
of damping foam to mitigate the impact, which are shown in
Fig. 2. Our model assumes that the vertical surface perching
maneuver can be described in a 2-dimensional plane normal
and tangential to the vertical wall; lateral motion along the
surface is ignored. Detailed modeling is described in [22].
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Fig. 2: The perching mechanism used in this paper. (1)
Directional and controllable adhesive pads; (2) Tendons; (3)
Rebound spring; (4) Damping foam. This is a lightweight
(2 g) version of the mechanism used in [1,22].

We use a further simplified model to describe the char-
acteristics of perching success and failure. For a perching
success, the adhesive pads attach to the surface during impact
and the quadrotor moves in a 2D plane as a rigid body
constrained by the rebound spring and perching surface.
Failure comes in two flavors: either the adhesive pads failed
to engage on a surface (engagement failure) or the rebound
spring bottoms out and rips the pads off the surface (adhesive
failure). Very occasionally (=~ 1% of experiments), the
adhesive pads successfully attach but gradually lose adhesion
and fail (delayed failure). Assuming the quadrotor does not
contact the surface during rebound, the equations of motion
are as follows:

mi = —kx (D

mz =kz —mg 2

where m is the mass of the quadrotor and k is the stiffness
of the rebound spring. The initial conditions are x = 0,2 =
VUrebas 2 = 0,2 = VUpep_», and the constraints are x > 0 and
ky/(2? + 22) < Flimir, where Flp; is the adhesion limit.
Thus the quadrotor’s linear motion is as follows:

1
x(t) = U’('eb,:l;*sinwt (3)
w
1
2(t) = —Vpep_o—sinwt + %coswt — % 4)
w w w

1/ % The quadrotor experiences maximum
acceleration when the rebound spring has fully extended. The
time of maximum acceleration in the surface X axis direction
is:

where w =

Y
tmaz.ace = 5— 5
% (%)

The time that the quadrotor returns to the surface in a
perching success is 2,45 qcc- Assuming that the quadrotor
impacts the wall without gross misalignment, the surface X
axis corresponds to the quadrotor body Z axis. In actual
experiments, the possible error introduced by this assumption
was on the order of 5%. In the rest of the paper, surface X
and body Z axes will be assumed interchangeable.

The rebound acceleration and velocity of a successful
perch can be calculated given an initial rebound velocity.
For an engagement failure, the quadrotor will experience
negligible rebound acceleration. The difference between an
engagement failure and a success will then be greatest at
tmas.ace. An adhesive failure will still resemble a success
at this time, but at time 2%,,4,_qcc should be clearly differ-
entiable from success as it enters free-fall. Fig. 3 illustrates
perching successes, different types of perching failures, and
the corresponding accelerometer characteristics.

III. PREDICTION RESULTS

Acceleration data was collected for the various perching
results. The impact and rebound segments of all the data were
extracted, and a list of features were constructed with anal-
ysis. An SVM algorithm selects the most relevant features
to achieve a high prediction accuracy. Learning errors are
subsequently discussed. More experiments were conducted
to verify the detection method on another quadrotor platform.

A. Data Acquisition

150 experiments were conducted to acquire accelerometer
data for perching successes and failures (74 and 76 trials re-
spectively). Each perching attempt consisted of four phases:
approaching, impact, rebound, and stay/free-fall, illustrated
in Fig. 3. The perching platform used in the experiments
is a 20g Crazyflie quadrotor [21] equipped with a 2g
adhesive mechanism, providing a maximum normal adhesion
of 2N. The stiffness of the rebound spring is approximately
60 N/m. The onboard accelerometer samples at 100 Hz. In
each trial the quadrotor was launched at a vertical glass plate
with various initial conditions. The motors and propellers
were disabled to launch with a ballistic trajectory, which is
similar to real perching scenarios. Perching successes were
achieved by launching the quadrotor at optimal conditions:
clean adhesive pads, a velocity of 1-2m/s, and an angular
misalignment less than 20°. Perching failures were achieved
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Fig. 3: Illustration of different types of perching failures comparing to perching successes.

by either occluding the adhesive, perching upon dirty sur-
faces, applying velocities outside the gripper’s envelope
of acceptable conditions, or applying a significant angular
misalignment before impact. Delayed failures were difficult
to induce and happened by chance. This method focuses on
analyzing accelerations after the impact; the initial conditions
serve as a black box and are not presented.

B. Data Processing

Raw data of representative cases are shown in Fig. 4,
with the exception of a delayed failure, which typically
occurred after data collection ceased. The accelerometer data
were not filtered; a typical perching maneuver included less
than 30 data points and did not show much noise. Using
impact as the starting data point, there are two decision time
choices: 40 ms (5 data points) and 80 ms (9 data points) after
the impact. According to the model, t,,4, qcc 1S at about
40 ms after the impact, and is the earliest decision time that
accelerometer data show a noticeable difference between
perching success and engagement failure. 80ms after the
impact corresponds to 2¢,,42_acc, and is the earliest time for
reliably differentiating between success and adhesive failure.

C. Feature Construction

Potential features are “constructed,” or aggregated, to have
their relevance assessed by a machine learning algorithm.
According to the analysis in Section II, accelerometer data
includes enough information for detecting perching suc-
cess/failure. Thus all the 3-axis accelerometer data points be-
tween the impact point and the decision point are selected as
relevant features for detection. Since the duration of perches
is inconsistent, a window spanning impact to decision cutoff
was set to check for relevant signal features. Such relevant
features include but are not limited to (1) large acceleration
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Fig. 4: Raw accelerometer data from a typical engagement
failure (top), a typical adhesive failure (middle), and a typical
perching success (bottom). The green shaded region is the
ballistic flying stage, and the red shaded region is the impact
and rebound stage. Two detection time choices illustrate
significant difference between success and failure. The first
decision time helps to differentiate between successes and
engagement failures, and the second decision time helps to
differentiate between successes and adhesive failures.



Feature Feature
Index, Feature Index,
40ms 80ms

1-5 Acceleration in body X 1-9
6-10 Acceleration in body Y 10-18
11-15 Acceleration in body Z 19-27
16 - 20 Acceleration magnitude 28 - 36

21 Max acceleration in body X 37
22 Max acceleration in body Z 38
23 Nearly zero acceleration 39

24-27 Jerk in body X 40 - 47
28 -31 Jerk in body Y 48 - 55
32-35 Jerk in body Z 56 - 63
36 - 38 Velocity change 64 - 66

Fig. 5: A list of all relevant features input to the SVM. The
algorithm scored the most relevant features as seen in Fig.
6.

in the body Z axis due to force from the rebound spring
and (2) at least two data points of nearly zero acceleration
caused by free-fall, to avoid mistakenly regarding successes
as failures. The difference in neighbored accelerations (jerk)
is also selected as relevant to capture the stretching speed of
the rebound spring. Velocity changes in perching successes
are also larger than in perching failures due to the effect of
the rebound spring, and thus the integration of acceleration in
the second segment could be relevant for detection. Delayed
failures were not considered in feature construction since
their time to failure is typically tens of seconds after im-
pact. Instead, a simple, reoccurring check for accelerometer
readings close to zero after perching screens for delayed
failures. Figure 5 shows a list of all relevant features based
on analysis.

D. Feature Selection

With the pre-selected features listed above, we used a Sup-
port Vector Machine (SVM) developed by [23] to evaluate
each feature and select a boundary to predict success or
failure based just on that feature. We then compared the pre-
diction with the real result to calculate prediction accuracy.
While all the features listed in Table 5 can contribute to the
detection, using every feature causes an over-fitting problem.
Training error becomes abnormally low while the test error
becomes high. With a backward searching algorithm, each
feature was assigned a score indicating the relevance to
correct detection. Two histograms listing the scores of all
possible features for both decision time choices are shown
in Fig. 6. A higher score corresponds to higher relevance.
Only a few of the highest scoring features were ultimately
selected for prediction.

A cross validation algorithm within the 150 data sets
was implemented to verify the performance of the selected
features. 70% of the data were used as training data with the
remaining 30% used as test data. The training set and test set
were randomly selected for every cross validation, and the

Fig. 6: Scores of all possible features. Upper: Detection at
40 ms after the impact. Lower: Detection at 80 ms after the
impact. Higher score corresponds to more direct correlation
to success and failure detection, and a negative score suggests
overfitting problem by adding that feature.
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Fig. 7: The learning curves for both decision time choices.
Upper: Detection at 40 ms after the impact. Lower: Detection
at 80ms after the impact. The training error and test error
converge and become stable as the total data size increases,
suggesting an adequate data size.

validation script ran 50 times. Training and test errors were
averaged afterwards. A learning curve showing the trend of
learning errors was plotted for both decision times in Fig. 7
as the size of the combined training and test sets varied from
10 to 150. The curves of training and test errors decrease and
converge as the total data size increases, suggesting that the
SVM algorithm can predict the result of a new trial with
similar accuracy, using all 150 trials as the training set.
Once we have identified the most important feature at each
decision time, we can calculate a threshold for discrimination
based on the simple model developed in Section II and see
how our analysis matches the thresholds predicted by the
SVM algorithm. For the 40 ms case, the most relevant feature
is large acceleration in the body Z direction. The initial



rebound velocity of typical successful perchings is between
0.2m/s and 0.6 m/s, corresponding to a calculated maximum
acceleration in body Z direction of 1.1 g to 3.3 g. Engagement
failures would show negligible acceleration in the body Z
direction, so a threshold set around the lower calculated
acceleration should discriminate effectively between success
and engagement failure. The SVM computes a decision
boundary of 1 g, supporting this analysis. For the 80 ms case,
the most relevant feature is near-zero acceleration magnitude.
This indicates free-fall, and the decision boundary can be
selected based on the noise of accelerometer data. The SVM
algorithm computes a boundary of 0.3 g.

At 40ms after impact the SVM algorithm predicts suc-
cess/failure with an accuracy of 91% by detecting the
presence of a greater than 1g acceleration in the body
7. axis. With decision time at 80ms after the impact, the
most relevant feature is the presence of at least two data
points with acceleration magnitude smaller than 0.3 g. The
corresponding prediction accuracy is 94%. For both cases
adding other important features boosts the accuracy by about
1% but needs proper weighting among features, which is
difficult to predict with the model. Acceleration magnitude
near zero is not very relevant for the 40 ms case since it is
not always enough time for a free-fall to occur, but 80 ms
almost always includes this information. There are tradeoffs:
a 40 ms decision time is less accurate than an 80 ms decision,
but results in a shorter free-fall distance (within 100 mm)
before detection. For an 80 ms decision, the free-fall distance
can be several hundred millimeters before detection. Other
features are also relevant but have limited contribution to the
prediction accuracy, and are thus neglected.

E. Causes and Considerations for Error

Even if the prediction accuracies for both decision time
choices are high, potential prediction errors can still cause
an MAV to crash. Within the 14 error cases for 40 ms, there
are 8 data sets where the algorithm failed to pick the right
impact point due to some abnormal impact (e.g. almost no
ballistic flying stage or multiple impacts). The remaining
error cases were usually caused by the fact that the data were
not completely separable within the dimension of the selected
feature. For 80 ms, the selected feature that detects free-fall
separates the data better. Note that there are several other
features that also have relatively high scores according to
Fig. 6. Adding these features can further boost the prediction
accuracy to 95%, but requires proper weightings among
features. Such weightings can be computed by the SVM
algorithm but are difficult to calculate by analysis.

Learning errors can be further divided into successes
being regarded as failures (false negative) and failures being
regarded as successes (false positive). If a false negative
detection occurs, the quadrotor will be fully powered on
and try to pry the pads off the surface. With the current
experimental setup the quadrotor does not have enough thrust
to overcome the adhesive limit of the mechanism, so this

type of error does not carry high risk.! If a false positive
detection occurs, the quadrotor will power down and fall to
the ground. This may damage the quadrotor and thus should
be avoided. By intentionally tuning the thresholds in feature
construction, we can bias the results towards false negatives
instead of false positives, possibly incurring a higher total
error. With some adjustment, false positive frequency was
reduced to 20% lower than false negative frequency, with
negligible decrease in total accuracy.

F. Extension to A Larger Quadrotor

The machine learning algorithm verifies the simplified
model for a Crazyflie platform in terms of acceleration and
decision time choices, but a larger vehicle might behave
differently. To begin to evaluate the applicability of such
detection methods to other platforms, more experiments were
conducted.

The new platform weighs 150g and is connected to a
pair of opposed adhesive pads (8 N normal adhesion limit)
with a rebound spring (stiffness 50 N/m). The onboard ac-
celerometer is identical to that of the Crazyflie platform.
Based on the new mass and stiffness parameters, the model
developed in Section II predicts the time that the vehicle
experiences maximum acceleration in the body Z direction
is about 90 ms after impact, which correspond to 10 data
points. The time that the quadrotor returns to the surface
in a perching success is then 180 ms, corresponding to 19
data points. These two decision times were verified by visual
inspection of the acceleration data plots, and 55 data sets
were recorded for machine learning and feature selection.

For 90 ms after impact, the maximum acceleration is still
one of the five most relevant features. The most relevant
feature shifts from maximum acceleration to the specific
acceleration at 90 ms, but the difference in prediction error
from using the original feature is small (2%). The range of
maximum acceleration in a perching success is calculated
to be between 1.4 g and 2.8 g, with some uncertainty due to
imprecision in velocity measurement. The decision boundary
for using maximum acceleration in body Z axis computed
by the machine is 1.5 g, which is indeed close to the lower
acceleration boundary predicted by the model. The prediction
accuracy is 89%, which is similar to the Crazyflie 40 ms
decision time. For 180 ms after the impact, the most relevant
feature is still acceleration magnitude near zero, and the
prediction accuracy is 96% - similar to Crazyflie 80 ms case.
Thus, it seems feasible to adopt the model and the detection
method to other quadrotor platforms.

IV. REAL-TIME EXPERIMENTAL RESULTS

Real-time experiments were conducted using the Crazyflie
quadrotor to verify the feasibility of the selected features to
detect perching success and failure. For each experiment, the
quadrotor was commanded to first fly at the wall at 2 m above
the ground and then pitch back to 90° to present the opposed
adhesive mechanism to a smooth surface. The maneuver used

'When take-off is desired, the gripper relaxes so that little force is
required for detachment.
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Fig. 8: An improved strategy that combines the detection at
40ms and 80 ms to enable high detection accuracy.
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Fig. 9: The raw accelerometer data from a complete perching
recovery cycle and a perching success. The perching recovery
cycle includes taking-off, hovering, ballistic approaching,
impact and rebound, recovering, hovering, and landing. For
the perching success, the quadrotor stayed on the surface
after rebound.

open loop control without the aid of a Vicon system. The
accelerometer data of a complete perching recovery cycle
and a perching success are illustrated in Fig. 9.

The time of impact is determined by looking for a
period of low-acceleration ballistic motion followed by an
acceleration spike on impact. In the real-time experiments,
the ballistic phase had slightly higher accelerations because
the rotors were still spinning down, and the acceleration
spike tended to be larger because of higher average perching
velocities. No part of the failure detection algorithm was
changed. Once an impact is detected, the quadrotor begins to
spin up its rotors for the recovery maneuver. If the algorithm
determines that the perch is successful at 40 ms or 80 ms, the
rotors power down. The algorithm continues to monitor the
accelerometer data in case of a delayed failure. This strategy
is illustrated in Fig. 8. Computation took place on a nearby
laptop communicating wirelessly with the quadrotor. The
recovery manuever simply utilized the quadrotor’s built-in
stabilization routine to return to level flight.

Figure. 10 shows the statistical performance of twenty
real-time experiments. Among the twenty experiments, there
are fifteen failures and five successes. The maneuver was
biased towards producing initial conditions leading to failure

Specs Average STD

Post-impact Attitude (Degrees) 86 19
Maximum Trust-to-Weight Ratio 14 0.2
Post-Impact Tangential Velocity (m/s) 0.6 0.5
Time before Detection (ms) 45 14
Falling Distance before Detection (m) 0.04 0.03
Time before Zero Pitch (ms) 310 60
Falling Distance before Zero Pitch (m) 0.4 0.2
Time before Full Recovery (ms) 660 170
Falling Distance before Full Recovery (m) 0.8 0.4

Fig. 10: A list of statistical performance of perching suc-
cess/failure detection. The high standard deviation of falling
distance is due to the high standard deviation of post-impact
attitude, thrust and tangential velocity, which were difficult
to keep consistent due to open loop control.

to facilitate exploration of the post-failure recovery behavior
of the quadrotor. In all twenty experiments, the failure de-
tection algorithm correctly identified the perching result. For
the failure cases, engagement failures had an average falling
distance before detection of 3 cm, while adhesive failures had
an average falling distance of 6 cm. The vehicle accelerates
downward until the attitude has been corrected to level,
which takes an average of 0.3 s, then decelerates until it stops
falling and begins to move upward. The Crazyflie used in
the experiments has an average thrust-to-weight ratio of 1.4,
which corresponds to a maximum deceleration of 0.4 g. On
average, the vehicle took 0.8 m to reverse velocity and begin
moving upward. Total falling distance varies depending on
the post-impact attitude, thrust level, and tangential velocity
of the quadrotor.

V. DISCUSSION

A. Perching on Vertical Surfaces

Results show that the detection method of setting a deci-
sion time, selecting the most relevant features (maximum
acceleration and nearly zero acceleration), and setting a
boundary is applicable to other quadrotor platforms. The
experiments using a larger platform detailed in Section III
show consistency of relevant features across the two different
vehicles analyzed. They also show that knowledge of system
mass and rebound spring stiffness enable calculation of
appropriate detection times. Furthermore, if post-impact re-
bound velocity can be determined from expected pre-impact
conditions and the coefficient of restitution for collision, the
boundary value for the acceleration in body Z can also be
predicted. Thus, given a new quadrotor, it should not be
necessary to conduct many experiments to take data and do
machine learning to set decision boundaries. A few launching
tests with the propellers off should be sufficient to compare
with the model, settle the exact boundary, and detect the
perching result with high accuracy.



B. Strategies for Extension to Other Types of Perching

While the proposed sensing strategy has been verified
on dynamic perching on vertical surface, it can also be
extended to perching on various other surface orientations
and curvatures with some modifications. The simple model
can be adapted by changing the initial rebound velocity
vector to capture the dynamics of various perching scenar-
ios. Combined with launching tests and machine learning,
the final crucial parameters should be similar to vertical
surface perching with slightly different values. However,
for floor perching where there is little difference between
perching success and failure, additional sensors need to be
included to detect the adhesion quality to detect perching

success/failures. VI. CONCLUSIONS

We present a success/failure discrimination method for
quadrotor vertical surface perching by using onboard ac-
celerometer data. With several most relevant features selected
by a support vector machine, the method is able to determine
a perching outcome with 91% accuracy after 40ms and
with 94% accuracy after 80 ms. Real-time experiments verify
the detection method. Perching failure is detected after an
average falling distance of 4 cm, and recovery from failure is
accomplished with an average total falling distance of 0.8 m.

The simple analytical model shows that critical decision
times rely upon the mass of the system and the stiffness of
the rebound spring. With these parameters and the typical
rebound velocity known, appropriate boundaries for failure
detection can be calculated for other platforms. Additionally,
the rapid discrimination of success and failure allows for
repeated trials and the identification of unsuitable perching
surfaces.

In the future a full flying-perching-recovery-reperching
cycle will be demonstrated. Accelerometer arrays will be
implemented on the quadrotor to provide more informa-
tion about misalignment with the surface, and thus inform
perching success/failure earlier. New force sensors integrated
directly on perching mechanisms will be made to further
shorten the decision time and identify surface suitability
for perching. Especially for micro-spine based out-door
perching, a new strategy will be developed to differentiate
between an improper perching initial condition and a bad
choice of perching surface, and therefore, inform whether it
is worthwhile to reperch on the same surface.
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