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VARYING SPRING 

PRELOADS TO 

SELECT GRASP 

STRATEGIES IN AN 

ADAPTIVE HAND 



PROJECT BACKGROUND 

 Autonomous undersea dril l ing platform 
 Remote, inaccessible 

 Two robot arms with interchangeable end-effector 
 Tools for repeated operations 

 Hand that accommodates many shapes and sizes  
 Able to pick up heavy objects 

 Won’t damage light objects 



Wrap grasp 

 Large objects 

 Secure grasp, many points of contact 

Pinch grasp 

 Small objects 

 Relies on friction 

 Dexterous 

 Requires full actuation 

 “Power-pinch” grasp 

 Grasp small objects securely 

 Don’t care about dexterity 

 Doesn’t require full actuation 

GRASP STRATEGIES 



 Hands generally pinch 
smaller objects with 
fingertips 
 Few contacts 

 Point or line contacts 

 Requires soft pads to 
improve contact 

 Underactuated hands 
cannot fully control finger 
configuration 
 SDM Hand, Meka Hand rely 

on kinematics & springs 

 Robotiq adaptive gripper 
keeps fingertips parallel  
 Less reliance on friction 

MOTIVATION – PINCH GRASPS 



SEABED HAND 



RANGE OF GRASPABLE OBJECTS 



 

THE HAND IN ACTION 



 3 Motors 
 Open / Close Fingers 
 Located in the base 

 Drives a leadscrew 

 Reconfigure Fingers 
 Located in the base 

 Rotates two motors 90 
degrees 

 Stiffen the fingers 
 Cable drive located in base 

 Pulley differential stiffens 
the finger 

 Issues 
 High-friction 

 Complicated 

 

BASIC DESIGN 



Adaptive mechanism 

Lowers sensing and 
control requirements 

Protects the motor and 
transmission from 
shock and vibration 

Actuators  

Small, low-power,  
non-backdriveable 

Located in the finger 

Simpler design 

 

SPRING PRELOAD MECHANISM 



Assumptions: 

Frictionless 

Circular object 

 Contact points are only a 
function of position. 

Symmetric 

Two-phalanx contact 

Finger position is a 
function of xc. 

VARIABLES AND EQUATIONS 



SMALL SPRING PRELOAD 



MEDIUM SPRING PRELOAD 



WAYS TO UNDERSTAND GRASPING 



Effective stiffness 

 𝑘𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 =
𝜕𝐹

𝜕𝑥
   

Lower preloads  

 Lower grasp stiffness 

 Higher range of 
perturbations 

Higher preloads 

 Higher effective stiffness 
– more precise 

 Lower range of 
perturbations 

STIFFNESS INTERPRETATION 



No single preload 

can grasp all objects 

Tradeoff between 

versatility and 

optimality 

Fingertip 

interference 

considered 

RANGE OF OBJECTS WHICH CAN BE 

GRASPED 



 Integrate pulling 
forces over the 
distance traveled 

Minimum Potential 
energy when f=0 

Potential Grasp 
Metric 

Useful for design 

Symmetric curves are 
good 

 

POTENTIAL ENERGY 



Three-phalanx 

Start in stable grasp 

Quasi-static 

Let velocity go to zero 

No contact friction, but 
spring is damped 

Four Cases: 

SEABED HAND ANALYSIS 



WORKING MODEL SIMULATION 



GRASPING A SMALL OBJECT 



FORCES IN SEABED HAND 



FORCES IN SEABED HAND 



FORCES IN SEABED HAND 



FORCES IN SEABED HAND 



Trade-off  

 Object size 

 Posture 

 Effective grasp stiffness 

 Disturbance force rejection 

 Energy absorption 

Example Tasks 

 Impacts:  
Small preload  Low grasp stiffness 

 Precision:  
High preload  High grasp stiffness 

 Slow-speed manipulation 

 

DISCUSSION 



Adaptive mechanism 

Lowers sensing and 
control requirements 

Protects the motor and 
transmission from 
shock and vibration 

Actuators  

Small, low-power,  
non-backdriveable 

Located in the finger 

Simpler design 

 

SPRING PRELOAD MECHANISM 



 Introduced the “power-pinch” 

Wider Range of Objects – 10:1 

 Improved Grasp Stability 

Next Steps 

Optimize kinematics. 

Use grasp metrics as a design tool. 

Develop new control strategies for 

spring preload mechanism 

 

 

CONCLUSIONS 
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