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Abstract—For small legged robots, ground contact interactions
significantly affect the dynamics and locomotion performance. We
designed thin, robust capacitive tactile sensors and applied them
to the feet of a small hexapod with C-shaped rotating legs. The
sensors measure contact forces as the robot traverses different
types of terrain including hard surfaces with high or low friction,
sand and grass. Different gaits perform best on different types
of terrain. Useful measured parameters include the magnitude
and timing of the peak normal forces, in combination with the
leg rotational velocity. The measured parameters were used in
a SVM classifier to identify terrain types with 82.5% accuracy.
Based on gait performance studies, we implemented a terrain-
based gait control using real-time terrain classifications. A surface
transitioning test shows 17.1% increase in body speed and 13.2%
improvement in efficiency as the robot adjusts its gait.

Index Terms—Force and Tactile Sensing, Legged Robots,
Sensor-based Control, Terrain Classification, Adaptive Gait Con-
trol

I. INTRODUCTION

FOR small legged robots and animals, the details of
interactions between their feet and the ground can have

a profound effect on the speed and efficiency of locomo-
tion. For example, on grassy terrain, the interactions may
dissipate significant energy due to the deformation of the
surface. Conversely on hard and smooth surfaces, slippage
may be significant. Perhaps of most interest are leg and ground
interactions on granular media such as sand and loose soil,
which can have a considerable effect on limb kinematics and
locomotion performance [1], [2].

Small animals use numerous mechanorceptors in their legs
and feet to monitor foot/ground interactions and adjust their
gait and speed accordingly. For example, in insects, campani-
form sensilla and sensory hairs provide a dynamic measure
of contacts and loads in the limbs [3]. However, practical
considerations including sensor size, robustness and wiring
have made it difficult to equip small robots with anything
approaching the sensory capabilities of small legged animals.
Tactile sensing on the feet would allow small robots to sense
the magnitudes and locations of ground contacts, providing a
measure of stability and maneuverability. It could also allow
robots to identify the terrain type and perform gait adjustments
for more efficient locomotion.

Among tactile sensors, capacitive sensors have enjoyed
a recent increase in popularity due to the availability of
inexpensive surface-mounted capacitance to digital converters
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(CDCs) to provide active shielding, signal processing and digi-
tal communication. Examples include sensors for robot hands
[4], [5] and miniature surgical grippers [6], [7]. For ground
reaction force sensing in small legged robots, capacitive tactile
sensors based on flexible circuits with surface-mounted CDCs
are attractive due to their low weight, robustness, and ability to
wrap around various geometries. For robots with rotary legs,
the minimization of wiring is an additional advantage.

In this paper, we study the utility of capacitive sensors
on small robot legs in measuring ground interactions and
updating adaptive gaits for different terrains. We present the
design and performance characterization of a thin, flexible
capacitive sensor designed to capture spatially distributed
tactile forces on a curved robot leg. To select appropriate gaits,
we examined running performance on different terrains, such
as hard surfaces, grass and granular media. A machine learning
classifier uses tactile sensor features in conjunction with motor
information to identify terrain type with 82.5% accuracy. The
main source of error is difficulty in distinguishing between
hard surfaces with high or moderate friction. In adaptive gait
tests on a transition between terrains, we show that terrain-
based gait adaptation improves the locomotion speed by 17.1%
and reduces cost of transport by 13.2%.

II. RELATED WORK

A. Tactile Sensing for Robotic Locomotion
Many technologies are potentially applicable to ground

force sensing including force/torque and tactile sensors. Com-
mon concerns include size and weight, especially on small
robots, and the complexity of wiring to connect the foot to
the body.

One of the earliest examples of tactile sensing in robotic
locomotion is the Raibert hopper [8], [9] which included a
binary ground contact sensor. Recognizing that binary contact
information is not enough to plan gaits and maintain control on
irregular terrain, other early legged robots used force sensing
[10], [11].

On large robots, force/torque sensors at the ankle are pop-
ular. They measure dynamic ground forces directly, and their
weight and volume are not difficult to accommodate. However,
they must be robust as they are subject to repeated impacts.
Many humanoid robots incorporate F/T sensors at the ankles
to measure forces and moments associated with maintaining
balance and sense ground reaction forces (GRFs) [12]–[16].
For the running Cheetah robot, Chuah et al. [17] present a light
and robust foot sensor. Kuehn et al. [18] present a design for
the foot that combines force/torque, tactile, acceleration and
proximity sensing.
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Fig. 1: Photograph and rendering of underside of SAIL-R, a hexapod drived by two motors in an alternating tripod gait. Slip
rings transmit power and communications to the tactile arrays on the front feet.

With tight constraints on volume and weight, force/torque
and tactile sensors are much less common in small legged
robots. However, these robots may more affected by the details
of foot/ground interaction when dissipative effects scale with
area rather than mass. Early efforts again include binary con-
tact sensors [19]. More recent demonstrations include binary
hair arrays, body tactile bumpers, and leg strain sensing [20],
[21].

The requirements to equip the feet of a small robot with
tactile sensors are similar to those for a dexterous hand,
although contact rates are higher (requiring a faster sampling
rate and higher mechanical bandwidth) and average forces may
be lower. Many transduction methods are possible including
optical, magnetic, piezoresistive, piezoelectric and capacitive.
Tactile sensing reviews are provided in [22]–[25]. A particular
wiring and communication challenge is introduced when the
robot legs undergo continuous rotation as in EduBot [26],
Whegs [27], and the robot in this paper.

Among possible transduction methods, piezoresistive sen-
sors based on conductive inks or polymers are inexpensive
and compact. However they typically suffer from substantial
hysteresis, which limits their use for dynamic applications
[24]. Another possibility is to pattern strain gages directly
onto the feet [20], but this solution requires signal condi-
tioning circuits and presents challenges for wiring between
continuously rotating legs and the robot body. As noted earlier,
capacitive sensors are increasingly popular; recent examples
include [28]–[32].

The main contribution of this paper is that it demonstrates
utility of distributed tactile sensing on the feet of a small robot
to identify terrain types and adjust gait accordingly. To our
knowledge, it also presents the first small (<500 g), untethered
robot with rotary legs and tactile sensors that measure shear
and distributed normal forces at the feet. Using the sensors,
we identify features useful to distinguish among terrain types,
allowing the robot to automatically adjust its gait for increased
speed and efficiency.

B. Gait Adaptation and Terrain Identification

Animals use a combination of neural feedback and passive
mechanical properties to accommodate variations in terrain,
the former being more observable in higher animals (e.g. mam-
malian running [33]–[35]) and the latter in running arthropods
[36], [37].

Gait adjustment may consist of variations in timing [38], leg
stiffness and swing angle or it may require a more dramatic
change, for example when transitioning from a hard surface
to granular media [39]. Strategies have included modifying a
wave gait based on inertial measurements and proprioceptive
information [40]; varying the parameters of a CPG-based
controller [41], [42], and varying the phase of a feedback
control [43]. For Rhex robots, gait tuning [44] and gait
transitions were demonstrated, for example to switch from
floors to stairs [45].

Terrain identification has also been an important topic for
wheeled-autonomous vehicles. Sensing methodologies include
dynamic vibration signals from inertial measurement units
(IMUs) [46]–[48], current/voltage measurements from motors
[49]–[52], vision systems [53]–[57], sound [58], and dynamic
tactile probes [59].

Although terrain identification for legged robots is less
developed, several approaches have been demonstrated using
a combination of contact and non-contact sensing. For large
robots, the dynamic signals from force/torque sensors [60],
[61], and tactile arrays [62]–[64] have been used. Indirect
sensing, such as motor current/position sensing and IMUs
in the robot body, is also used for terrain identification or
classification algorithms [65]–[70].

For small running robots, however, indirect sensing has a
couple of disadvantages for characterizing ground contacts.
Motors may have a substantial gear ratio and may drive
multiple legs. Hence motor current is a relatively insensitive
dynamic measure of force variations at, for example, the front
feet. In addition, body inertial measurements are noisy, espe-
cially when running on rough surfaces, and body accelerations
reflect the impulses from multiple feet; this requires longer
episode lengths (sensor sampling time for averaging statistical
features) to obtain higher accuracy [66].

The terrain identification approach used here extends that
presented in [32] for a planar hopper by incorporating spa-
tially distributed temporal ground contact force data from an
untethered hexapod for terrain classification. Details of the
terrain classifier are presented in Section IV-E.

III. SAIL-R
A. Robot Design

SAIL-R (Fig. 1) is a hexapod with C-shaped legs, interme-
diate in size between EduBot [26] and DynaRoACH [71]. The
chassis is constructed of laser-cut masonite and the legs are



IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. X, MONTH 2018 3

3D-printed ABS plastic. Robot specifications are provided in
Table I.

1) Transmission System: Chain and sprocket transmissions
link the two motors (Pololu 50:1 Micro Metal Gearmotor)
to the left and right tripods, shown red and blue in Fig. 1.
The overall gear ratio is 65:1 from the motors to the legs.
Encoders provide a resolution of 0.46° at the legs. Slip rings
(Orbex Group, 503-0600) on the front legs transmit power and
communications to the tactile sensors.

2) Control Electronics: The controller is a 32-bit ARM®
Cortex®-M4F microprocessor (TI TM4C123GH6PM). Ad-
ditional components include a current and voltage sensor
(Attopilot, 13.6 V/45 Amps), motor drivers (TI DRV8838),
voltage regulator (TI TPS63061), Bluetooth radio modem
(Roving Networks RN-42), and the tactile sensors, which are
described in Section III-C1. The main control loop runs at
333 Hz.

B. Gait Control

There are various ways of generating and controlling the gait
of a hexapod robot. A review on the dynamics and stability of
legged locomotion can be found in [72]. In particular, central
pattern generators (CPGs) (a survey of which can be found in
[73]) are a standard tool to design gait reference generators.

However, one of the goals of the present work is to use
ground reaction force information to help a robot determine
appropriate gait parameters for a particular type of surface. In
this respect, a disadvantage of CPGs is that model parameters
such as the type and number of oscillators, waveform parame-
ters such as frequency, amplitude and phase lag, and the effects
of input and feedback signals, are strongly interconnected.
As a result, it is difficult to change gait patterns without
continuously solving sets of coupled differential equations
online. This challenge is exacerbated by the lack of well-
understood dynamic models for leg-ground interaction for
hybrid wheel-leg robots traversing deformable and granular
surfaces such as grass and sand.

Alternatively, the Buehler clock gait kinematics described
in [74] provide a tested framework to relate the stance and
air-borne gait phases of a hexapod robot with hybrid wheel-
legs. This generator ensures gait stability and enables the robot
to traverse a variety of outdoor terrain by tuning four control
parameters: tc the cycle period, ts the stance time, φs the
stance phase angle, and td the double stance time when both
tripods are contacting the ground. An illustration of this phase-
based gait cycle is provided in Fig. 2. The Buehler clock gait
tuning allows simple exploration of various gaits and smooth

TABLE I: Specifications for hexapod robot.
Parameter (µ) Value Units
External Dimensions (LxWxH) 140x80x30 mm
Mass 375 g
Leg length 38.5 mm
Leg stiffness 3400 N/m
Motor stall torque 105.9 mNm
Motor no load speed 625 rpm
Gear ratio 65:1
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Fig. 2: Buehler clock gait cycle [74] features include ωslow
(slope of φs over ts) and RPM. Green shaded region is fast
portion of gait, yellow is slow.

gait transitions. For similar reasons, others [69] have also
used the Buehler Clock for gait adaptation. Here, we define
ωslow, the angular velocity of leg rotation during stance phase,
as φs/ts and we vary tc by the leg RPM. In Section IV-B
we explain the choice of gait parameter sets for exploring
how changing a single control parameter can lead to different
locomotion performance on different surfaces.

C. Tactile Sensing

1) Sensor Design and Integration: The capacitive sensor
design (Fig. 3) is adapted from [32] and consists of five
5x5 mm normal force sensing taxels along an 8mm wide
polyimide four-layer flex circuit (FPCB). An additional taxel,
sandwiched in a preloaded elastic hinge at the hub, measures
the overall shear force. The circular leg design decouples shear
and normal force measurements. Normal forces, which are di-
rected radially inward on the legs, produce very little moment
at the center and hence are not measured by the shear force
sensor; in contrast, tangential forces produce large moments
and load the shear force sensor in compression and tension.
The sensor is bonded to a 3D-printed (Stratasys ABSplus)
curved robot leg (10mm wide, 40mm long measured from
hip to toe) with adhesive (Loctite 401). The total sensor/leg
assembly mass is 2.89 g, of which the sensor is 1.14 g.

A 16-bit CDC (Analog Devices AD7147) samples the six
sensing pads at 217 Hz. Sensor data are acquired via I2C
through a microcontroller (Microchip PIC24F04KA201) and
sent to the main robot microcontroller through UART.

2) Sensor Performance: The curved sensor/leg assembly
is calibrated against a commercial force/torque sensor (ATI
Gamma SI-32-2.5, accuracy: 0.05N) while mounted to the
body of the robot. Fig. 4 shows calibrated sensor data in
normal and shear axes as compared to the ATI load cell. The
calibration takes bending of the leg into account to maintain
decoupling of normal and shear forces at the contact, and
demonstrates a close match to ATI load cell data. As in [32],
the minimum resolvable normal force is ≈13 mN. Although
the sensor been tested for loads of 100 N in compression, in
practice the maximum force is approximately 15 N in both
normal and shear directions to avoid damaging the legs.
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Fig. 3: Integrated capacitive tactile sensor on the front legs: five normal force taxels are along the contact region of the leg; a
sixth taxle at the hub measures shear forces. 3D printed ABS leg is coated with 3M Greptile™ for traction.
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Fig. 5: Outdoor terrains with varying physical properties
selected for gait experiments.

IV. GAIT ADAPTATION FOR DIFFERENT TERRAINS

We studied gait adaptations for faster and more efficient
running on different types of terrain. First, we examined per-
formance on different terrains to select desired gait parameters.

A. Terrain Selection

As shown in Fig. 5, eight outdoor surfaces with varying
stiffness, friction, and dissipation were considered for gait
selection and terrain classification. Surface properties are
summarized in Table II. As in [32], the surfaces are grouped

TABLE II: Terrains used in GRF sensing and classification.
Numbers match Fig, 5; machine learning class labels listed in
Section IV-A.

Terrain Description Friction
Coefficient
(µ)

Penetration
Depth
(mm)

Class
Label

1 concrete 1.0 0 HF
2 waxed tile 0.5 0 LF
3 laminate wood 0.6 0 LF
4 medium-

density grass
1.14 20 D

5 wood
chips/mulch

1.04 7 D

6 gravel 1.04 5 D
7 pebble 0.88 8 D
8 sand 0.95 25 G

into classes: high friction, high stiffness (HF), low friction,
high stiffness (LF), deformable (D), and granular (G).

B. Viable Gait Parameter Space

On different surfaces, we explored two gait patterns: fast-
walk and trot. In general, the gaits with a longer ground contact
time would be considered walk or fast-walk gaits and those
with a short ground contact time would be considered trots.

For fast-walk gaits, we varied the overall leg rotation speed
(RPM) while holding the ground contact time (ts) and φs
fixed. For most of these gaits there is a significant double-
stance time as a fraction of the overall gait period. The Buehler
clock parameters for this series are illustrated in Fig. 6a with
leg speed varying from 260 to 320 RPM.

For gaits approaching a trot, we varied ωslow while hold-
ing the overall leg rotation speed and φs fixed. As ωslow
increases, the ground contact time becomes shorter, and the
gait becomes increasingly impulsive, approaching a trot with
an airborne phase. The Buehler clock parameters for this series
are illustrated in Fig. 6b with the ωslow varying from 7.6 to
30.3 rad/sec and the overall leg cycle fixed at 260 RPM.

For both series, the upper limit on overall rpm or ωslow
is limited by the need to avoid damage to the legs on hard
surfaces.
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Fig. 6: Buehler clock gait parameters for testing two types of locomotion behavior: (a) fast walk and (b) trot. Bold lines are
gait parameters with faster body speeds.

TABLE III: Preferred gait selection on different terrain
v (Body Speed) COT Leg Structural Safety

HF Fast walk Fast walk Fast walk
LF Fast walk Fast walk Fast walk
D Trot Trot Trot ≈ Fast walk
G Fast walk Fast walk Trot ≈ Fast walk

C. Locomotion Results

For both fast walk and trot gaits, we ran SAIL-R five
times with each set of gait parameters. High speed videos
(240 FPS) were recorded to observe leg-ground interactions;
example videos on each class of terrains are included in
the supplementary material. We evaluated two performance
metrics: forward velocity and cost of transport (COT) or
specific resistance, calculated as S = Pe/mgv, where Pe is
the total electrical power of the system, g is the gravitational
constant, and v is the forward velocity. The forward velocity
is measured by allowing the robot to perform open-loop free
running given a set of gait parameters for 5 s and taking the
distance between the starting and ending positions. Five trials
were performed for each set of gaits; results are shown in
Fig. 7 and 8. Table III lists comparisons between fast walk
and trot gaits on each type of terrain. The detailed explanation
is as follows.

1) Hard Surfaces (HF, LF): On hard surfaces, the robot
performs with better repeatability and smoothness (i.e., re-
peated stride to stride landing, and small body roll and pitch
motions) when using a fast walk than a trot. To avoid potential
leg damage, the robot is unable to exceed ωslow of 11.3 rad/s
in the trot gait. A further discussion of safety to avoid leg
damage is provided in Section IV-D1.

Body speeds generally increase as the stride frequency
increases. On concrete, however, Fig. 7a shows a slight de-
crease in speed at 320 RPM. With this high stride frequency,
the robot gaits become erratic with impulsive leg-ground
contacts, lowering the forward body speed. Due to slippage,
LF (laminate) shows lower speeds than HF (concrete).

Cost of transport generally decreases with increased stride
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Fig. 7: Forward robot velocities achieved with (a) fast walk
gait and (b) trot gait.

frequency due to the increased body speed with bouncing gait
behavior (Fig. 8a). With stable fast walk gaits (260 RPM), LF
(tile, laminate) has slightly higher COT than HF (concrete)
because of the slip. With more aggressive fast walk gaits
(RPM ≥ 280), HF and LF have a comparable COT and
the ground interactions on both terrains are mostly impulsive
normal contacts.

2) Deformable Surfaces (D): Both fast walk and trot gaits
are consistently smooth and predictable on deformable sur-
faces (D) such as wood chips, gravel, pebbles and grass.
Body speeds increase with stride frequency or ωslow. With
the given control, Fig. 7b shows that the trot gait at 260 RPM
can achieve higher speed than fast walks; we observe fast
“crawling” behaviors with trot gaits, pushing off harder against
the deformable terrain despite significant penetration depths.
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Fig. 8: Robot cost of transport (COT) achieved with (a) fast
walk gait and (b) trot gait.

Costs of transport for fast walks are slightly higher than trot
gaits, but they are comparable. We observe that both types of
gaits run with high penetration depths on D, requiring high
motor torques and power consumption.

3) Granular Media (G): Both fast walk and trot gaits are
comparatively stable because the particles dissipate impact
energy. Fig. 7 shows both gaits with comparable body speeds.
In contrast, prior work with SandBot found that a double
stance (both tripods in contact with ground), which occurs
with fast walk gaits, significantly lowers the body speed on G
because of interference between the tripods [1]. The result may
stem from the difference in weight: SAIL-R is 6 times lighter
than the 2.3 kg SandBot and has less surface penetration.

Fig. 7 also shows a monotonic increase in speed without
any decreases due to transitioning into swimming [1]. Again,
the low weight of SAIL-R generates sufficient lift to prevent
such a transition [2].

Comparing the fast walk and trot gaits, the former has a
higher maximum speed with lower COT; we surmise that
in the double-stance phase, the two tripods push the terrain
with lower foot pressure for less energy loss. More generally,
among all surfaces, G shows highest COT in both gaits because
the robot does not have an airborne period.

D. Ground Reaction Forces vs. Gait

Normal and shear ground reaction forces across the 8
surfaces tested are shown in Fig. 9. As expected contacts on
harder surfaces are more impulsive. On deformable surfaces
and sand, ground contacts result in lower maximum normal
force and a longer period of contact. Shear sensor signals are
more pronounced on deformable surfaces and resemble the
spring-inverted pendulum (SLIP) model of dynamic legged
locomotion [75]. However, deviations from the model can be
seen on surfaces such as gravel, wood chips, and pebbles. We
believe this may be caused by the foot displacing material.

1) Gait Consistency and Safety Analysis: Tactile sensors
also provide valuable information about gait quality. Especially
on hard surfaces, a smooth and predictable gait without
substantial rolling and pitching gives more consistent contact
locations. From experiments, we located the leg contact points
by monitoring normal sensor indices (N1-5) where the max-
imum force occurs during each step (900 steps for both HF
and LF). Fig. 10 shows that the sensor index varies more with
aggressive gaits, meaning more inconsistent landing locations
of the legs.

By combining measured normal force data with Buehler
clock phases, we can further evaluate the consistency of each
step (Fig. 11). For example, in a delayed landing step, the robot
lands as it transitions into the faster portion of its gait cycle,
resulting in undesired locomotion. Missed ground contact in a
cycle indicates an airborne behavior of the leg, causing uneven
load distribution on the other legs and potential leg failure.

By monitoring the measured force level and missed steps,
the robot can examine gait safety to avoid structural failures.
Fig. 12 shows peak normal forces of each step and the ratio
of missed steps from 8200 strides. On hard surfaces (HF,
LF), both fast walk and trot gaits demonstrate similar GRFs.
However, trot gaits show significantly more missed steps,
making them less safe for the legs. On soft surfaces (D, G),
the GRFs are lower than for hard surfaces because the media
dissipate impact energy. Although trot gaits shows few missed
steps due to the heterogeneity of the terrain, lower GRFs
ensure the legs will still be safe from damage.

2) Distributed Tactile Sensing: Figure 13 demonstrates spa-
tially distributed GRF data as measured by the tactile sensor.
As in [32], the sensor is able to track contact forces at various
points along the legs. On softer surfaces, contact duration
is longer for each step while amplitude is smaller. Contact
locations are also noticeably different; hard surfaces have a
single contact point, D shows sequential contact point changes,
and G shows shared loads on multiple contact points. These
measurements provide confidence that contact force signatures
are unique to surface types and that temporal information from
the sensor can be useful in terrain identification.

E. Outdoor Terrain Classification

Tactile sensors were used to classify outdoor terrains. For
comparison with previously reported approaches [66], we also
mounted an IMU to the robot and used it to classify terrains.

1) Features Extraction: For the tactile sensors of SAIL-
R, we extract relevant features from single-stride sensor
waveforms. Table IV provides a list of features used for
the classifier. For comparison, we also attached a 6 DOF
IMU (ITG3200/ADXL345), sampled at 200 Hz. The extracted
features from the IMU experiments are listed in Table V and
are similar to [66]. For comparison, the episode length is
chosen as 50 ms (average single stride contact duration) around
the local peak of vertical accelerations.

2) Classifier Selection: To evaluate the machine learning
performance of terrain classifications, we used a support vector
machine (SVM) classifier with a PUK kernel because of its
high accuracy in terrain classification when used previously on
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TABLE IV: Tactile Machine Learning Feature Set (*excluded
for real time classification in Section IV-F)

Index Feature Name
1 Peak amplitude of sum(N1-5)
2 Contact period of sum(N1-5)
3 Area under curve (impulse) of sum(N1-5)
4 Gait parameter - Motor RPM
5 Gait parameter - Ratio Ts to Tc
6 Average amplitude of sum(N1-5)
7 Gait parameter - ωslow

8-12 Individual normal taxel (N1-5) force peak amplitude
13-17 Individual normal taxel (N1-5) rise time to peak
18-22 Ratio of individual taxel force peak to peak sum(N1-5)
23-25 Max, min, average shear taxel force (S1)
26* Motor RPM at peak sum(N1-5)
27* Input current at peak sum(N1-5)

28-29* Input current average, range
30-34 Average normal force on individual taxels (N1-5)
35-39* Motor RPM at peak force for individual taxels (N1-5)

TABLE V: IMU Machine Learning Feature Set
Index Feature Name

1 Gait parameter - Motor RPM
2 Gait parameter - Ratio Ts to Tc
3 Gait parameter - ωslow

4-12 2nd statistical moment of two motor RPM, acceleration
(x,y,z), angular velocity (x,y,z), input current

13-21 3rd statistical moment of the same features
22-30 4rd statistical moment of the same features

a bipedal platform in [32]. For both tactile sensor and IMU
features, a total of 3072 data sets (768 per terrain class) were
used to train and test the classifier. WEKA 3.7 [76] was used
for classifier training and testing. Table VI lists the classifier
accuracy evaluated using 10-fold cross-validation.

3) Classifier Performance: Using the tactile sensing fea-
tures in Table IV, the SVM classifier achieved 82.5% overall
accuracy. Notably, the accuracy was 25% worse for distin-
guishing hard high friction (HF) and low friction (LF) surfaces.
This is partly because the coefficients of friction, µ ≈ 1 for

TABLE VI: SVM classifier results using feature set of Ta-
ble IV and Table V.

Tactile IMU Tactile IMU Tactile IMU Tactile IMU
HF 69.8% 58.1% 28.9% 32.6% 0.9% 5.6% 0.4% 3.8%
LF 28.5% 26.6% 69.8% 61.9% 1.0% 7.9% 0.7% 3.7%
D 3.0% 5.7% 1.2% 5.7% 92.5% 73.1% 3.4% 15.5%
G 0.4% 0.3% 0.1% 1.2% 1.7% 6.5% 97.8% 92.1%Tr
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Fig. 14: SVM classifier weight of features in Table IV

HF and µ ≈ 0.5 for LF, are much closer than in previous work
[32], where the coefficient of friction was µ = 0.04 for the LF
surface. Hence the contact forces for the HF and LF cases are
relatively similar. A second issue is that the most useful signal
for friction is the shear force, but we observe from Fig. 9f that
the quality of the shear data for hard surfaces is relatively poor
due to the short contact time. A better solution in the future is
probably to model hard surfaces as having a spectrum ranging
from low to high friction, with each tested surface occupying
an approximate place along the spectrum.

When comparing classification using tactile versus IMU
features, we observe that the tactile features are particularly
effective on deformable surfaces. On average, the accuracy is
11% higher, and for deformable surfaces (D) it is 19% higher.
With IMU data, there is a noticeable confusion between D
and G; we surmise that both surfaces stabilize the body mo-
tions by absorbing impact energy, making the differentiation
harder. However, as shown in Fig. 13, tactile sensors provide
distinguishable temporal and spatial information which easily
differentiates D from G.

A potential advantage of tactile sensing is a short episode
length. Table VI shows that the overall performance is better
in tactile sensing features with the comparable episode lengths
(average 41ms for tactile features and 50ms for IMU features).
As mentioned in [66], the statistical moment approach, which
is used for IMU feature sets, requires a longer episode for
better accuracy; we surmise that it takes longer to develop
distinguishable vibratory patterns of body motions. In contrast,
the tactile sensor measures the GRF as it makes contact.

4) Feature Analysis: To examine the value each tactile
feature adds, we performed feature score analysis on the SVM
classifier using a greedy stepwise search algorithm. Fig. 14
shows that among the top 4 features, two (21, 1) are directly
related to GRF measurements from tactile sensors and one
(26) uses the temporal information of tactile sensing. One of
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TABLE VII: Logistic classifier results using a feature set of
Table IV without motor measurements

HF LF D G
HF 67.3% 28.0% 2.1% 2.6%
LF 28.1% 66.8% 2.5% 2.6%
D 5.0% 2.7% 73.2% 19.1%
G 1.0% 0.7% 14.1% 84.2%
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TABLE VIII: Surface Specific Adaptive Gait Parameters
Terrain Class RPM ts/tc φs

(rad)
ωslow

(rad/s)
Gait Type

Sampling 240 0.47 0.7 6.0 slow walk
HF 300 0.58 0.7 6.0 fast walk
LF 280 0.5 0.7 6.0 fast walk
D 260 0.3 1.05 22.7 trot
G 300 0.58 0.7 6.0 fast walk

the gait parameters (RPM) scored the second highest because
it varies the locomotion significantly [66].

Fig. 15 demonstrates qualitatively how the top 4 features
classify the terrains. The proportion of N4 to the normal
force sum (Index 21) shows semi-binary distributions on hard
surfaces (HF, LF), wide distributions on D, and concentrated
distributions on G. These patterns follow the characteristics
of each terrain: hard surfaces give impulsive single point
contact (usually on N3 or N4), deformable surfaces give non-
uniform distributed contact, while G has a more uniform
or consistent contact. Peak amplitudes of normal force sum
(Index 1) mostly differentiate hard and soft terrains because
soft terrain dissipates impact energy more. Motor RPM at peak
of normal force sum (Index 26) mostly differentiates D from
G because of the difference in penetration depth.

F. Real-Time Terrain Classification and Gait Adaptation

In this section we present adaptive gait control based on
real-time terrain classification using tactile sensors; example
videos are included in the supplementary material.

Start Sampling
State

High 
Friction

Low 
Friction

Deformable

Granular

Fig. 16: FSM implementation of terrain-based gait adaptation
based on the cumulative probability calculated by the logistic
regression classifier. Pr(x) represents the highest cumulative
probability for a particular surface type.

1) Real-Time Terrain Classification: The SVM classifier
uses between 500-600 support vectors for each stride instance,
which requires more computational effort than a logistic
classifier. Comparatively, the logistic classifier model can be
evaluated with a single line of C code. Due to SAIL-R’s com-
putational limitations, we concluded that the logistic classifier
is a better candidate for real-time terrain classification.

To further reduce computational effort, we used only the
left leg sensors and a subset of the features, flagged with an
asterisk in Table IV. In this case the overall accuracy decreases
to 72.9% (Table VII). Again the main confusion is between
HF and LF surfaces. To compensate for the reduced overall
accuracy we implemented a real-time classification algorithm
that takes into account the history of prior steps to create a
weighted cumulative probability.

The probability of being on jth terrain (Pj) from the
multinomial logistic classifier model [77] is:

Pj(x
(n)) =

eβ
T
j x

(n)

1 +
∑k−1
j=1 e

βT
j x

(n)
(j = 1, · · · , k − 1)

Pk(x
(n)) = 1−

k−1∑
j=1

Pj(x
(n)) =

1

1 +
∑k−1
j=1 e

βT
j x

(n)
(1)

where k is the number of terrain classes, x(n) is a feature
vector of the nth stride instance, and βj is a coefficient vector
of the logistic classifier for jth class. The weighted cumulative
probability(CP ) for each terrain class is then:

CPn,j = Pj(x
(n)) + αCPn−1,j (2)

where α is the weight factor (< 1). The final terrain type is
selected by the class with the highest cumulative probability.

This algorithm adds robustness for lower accuracy surfaces,
e.g. between HF and LF, but slows the response. For gait
adaption, the detection delay, which can be tuned by α, should
be selected based on the application. A large (conservative) α
value increases accuracy at the cost of response time, but a
small α can lead to unstable robot performance caused by
frequent changes in gait parameters.
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Fig. 17: Real-time terrain identification results based on lo-
gistic classifier and cumulative probability (α = 0.7). The
classifier used information from one step to classify the
transition.

(a) Traversing high-friction and deformable surfaces with a steady
fast walk.

(b) Traversing a high-friction surface with a fast walk and
transitioning to a trotting gait on a deformable surface.

Fig. 18: Adaptive gait control demonstrating improved speed.
Frame interval is 520 ms; increased distance between images
indicates greater speed.

2) Finite State Machine Implementation: For the terrain-
specific gaits, we implemented a finite state machine (FSM) as
shown in Fig. 16. For each state, SAIL-R runs with parameters
as in Table VIII, selected by the analysis of body speed and
COT in Section IV-C. The robot starts in a sampling state with
a slow walk to identify the terrain. The cumulative probability
from each stride can trigger a transition of states and then
the robot updates the gait. One special case is the transition
from D to hard surfaces; the trot gait of D can cause structural
failures of the legs if the surface is not soft. Thus, the controller
detects the normal force beyond a threshold level to identify
such a transition, which can proceed immediately.

3) Performance Evaluation: We evaluated the real-time
classification and adaptive running by comparing it with a
steady fast walk gait. For both test cases, we conducted 9
test runs on a track transitioning from HF (µk = 1) to D. We
measured average body speeds and COTs on the track of 1 m
length (50 cm for each terrain).

The real-time classification result (Fig. 17) shows that
the proposed CP algorithm improves classification on hard
surfaces and detects the transition within 2-3 strides.
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Fig. 19: Robot performance comparison between fast walk
(RPM: 300) and an adaptive gait in transition from HF to D.

Using the proposed FSM, SAIL-R adapts its gait, achieving
faster and more efficient running. Figure 18 shows high speed
video overlays, comparing a steady fast walk gait and an
adaptive gait. SAIL-R was able to change its gait to faster trot
gaits on D. Figure 19 shows robot speed and COT for adaptive
and non-adaptive gaits; we measured 9 trials for each case.
As expected from gait evaluations (Fig. 7 and Fig. 8) SAIL-R
achieves better running performance with an adaptive gait: on
average, 17.1% faster speeds and 13.2% lower COT.

G. Conclusions

We have presented an approach for using tactile sensors
on the feet of a small robot to identify terrains and adapt its
gait in response to terrain changes. The sensors are capacitive,
fabricated using flexible printed circuit technology, with local
processing to reduce wiring to the rotary legs.

The sensors consist of five normal force taxels and one
shear sensor, sampled at 217 Hz. The resulting information
is sufficient to characterize interactions between the legs and
the ground. Key features from the tactile data include impact
forces, contact duration, and leg contact locations. Using tac-
tile sensing information combined with motor measurements,
we constructed a SVM classifier which distinguishes between
the four terrain classes with 82.5% overall accuracy. The main
source of error is between otherwise similar hard surfaces with
moderate (µ = 0.5) or high (µ = 1) friction.

For gait selection, we tested two different gaits (fast-walk
and trot) on four types of terrain. In terms of stability, speeds
and cost of transport, fast-walk gaits perform better on hard
and granular surfaces, while a trod gait performed better on
deformable surfaces.

Using a simplified version of the terrain classifier for real-
time computation, we implemented a gait adaptation system.
To compensate for a lower classification accuracy we imple-
mented a cumulative probability classifier. The resulting gait
adaptation detects the transition between two terrains within
two strides and demonstrates 17.1% increase in body speed
and 13.2% decrease in COT as compared to an unchanging
fast-walk gait.

As future work, the optimized gait parameters for each
terrain type can be suggested from thorough parametric stud-
ies, similar to [78]. If more powerful onboard computation
is available, the terrain based control could also employ a
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classifier with higher accuracy and detect transitions more
rapidly; potential candidates are deep learning algorithms, such
as RNN and LSTM. The proposed tactile sensory system can
also be useful for walking on rough terrain in planning leg
placements for stable walking.
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